BAB I

PENDAHULUAN

1.1 Latar Belakang

Keselamatan radiasi adalah tindakan yang dilakukan untuk melindungi pasien, pekerja, anggota masyarakat, dan lingkungan hidup dari bahaya radiasi, yang dimana radiasi merupakan gelombang elektromagnetik dan partikel bermuatan yang karena energi yang dimilikinya mampu mengionisasi media yang dilaluinya, maka terkait hal tersebut diperlukan tindakan yang dilakukan untuk mengurangi pengaruh radiasi yang merusak akibat paparan radiasi yang disebut dengan proteksi radiasi (Monita, 2021).

Peralatan proteksi radiasi diantaranya: lead apron, thyroid shield, kaca mata Pb, gonad shield, dan tabir mobile. Lead Apron adalah Alat Pelindung Diri (APD) yang melindungi pekerja radiasi dari bahaya efek radiasi pengion. Meskipun begitu, penggunaan lead apron belum tentu dapat mengurangi efek stokastik dari radiasi pengion. Efek stokastik dapat terjadi walaupun dosis radiasi yang diterima kepada pekerja sangat kecil atau di dalam batas ambang yang telah ditentukan oleh PERKA BAPETEN No 4 Tahun 2020. Perawatan lead apron juga sangat penting dilakukan untuk menjaga keadaan fisik dari lead apron itu sendiri agar tetap terjaga dengan baik yaitu dengan cara menghindari faktor-faktor akan kerusakan dari *lead apron*, seperti dengan menjatuhkannya dilantai, menumpuknya ditumpukan atau dengan meletakkannya di belakang kursi. Karena semua tindakan ini dapat menyebabkan fraktur internal timah, yang dapat membahayakan kemampuan pelindung *lead apron*. Pada saat tidak digunakan, semua pakaian pelindung harus digantung pada rak yang dirancang dengan benar. Penggunaan lead apron yang pas dan ringan, serta inspeksi rutin tahunan, merupakan cara yang efektif dan penting untuk menggunakan peralatan pelindung diri (Yoshandi & Hamdani, 2021). Pendidikan dan

pelatihan yang tepat tentang penggunaan peralatan pelindung radiasi yang tepat harus diwajibkan untuk mengurangi paparan radiasi dalam praktik (Cheon, et al 2018).

Dilihat dari bahan dasarnya, *lead apron* terbuat dari plat timbal yang mempunyai nomor atom tinggi dan dilapisi kain pada bagian luar sehingga berat dan kaku, apabila terjadi tekukan walaupun sedikit atau bengkok, sangat sulit untuk kembali ke bentuk awal dan itu akan dapat menyebabkan terjadinya kebocoran pada fisik *lead apron* (Puspita Sari et al., 2020). Kelayakan dari *lead apron* yang dipakai oleh petugas radiasi radiasi menjadi faktor penting dalam keselamatan radiasi. Jika terjadi kerusakan seperti robekan, patahan atau retakan pada *lead apron*, maka *lead apron* tersebut sudah tidak bisa berfungsi atau tidak layak, yang dimana fungsi dari *lead apron* adalah melindungi dari bahaya radiasi sinar-x. Untuk mengetahui apakah *lead apron* tersebut terjadi kerusakan maka harus dilakukan pengujian dengan modalitas sinar-x

Menurut KEPMENKES Tahun 2009 tentang Pedoman Kendali Mutu (QC) Peralatan Radiodiagnostik, pengujian *lead apron* dilakukan apabila diperlukan, atau sesuai dengan jadwal sekitar setiap 12 – 18 bulan sekali menggunakan modalitas sinar-x, seperti *computed radiography, digital radiography, fluoroscopy, CT-Scan*, dan *C-Arm*. Penggunaan sinar-x sangat bagus dalam pengujian kebocoran *lead apron*, dikarenakan sinar-x memiliki panjang gelombang elektromagnetik yang sangat pendek dengan energi yang sangat besar dan daya tembus yang sangat tinggi,

Seperti pada penelitian Yoshandi & Hamdani (2021), pengujian *lead apron* dengan menggunakan pesawat *fluoroscopy* unit. Pengujian ini menggunakan pesawat sinar-x *fluoroscopy* dengan cara membentangkan *lead apron* di atas meja pemeriksaan dan dilakukan penyinaran. Hasil pengujian dilihat di monitor. Pengujian *lead apron* dapat juga dilakukan dengan menggunakan *computed radiorgraphy* (CR), dilakukan dengan cara meletakkan *phospor plate* (*imaging plate*) ukuran 35 x 43 cm untuk mengevaluasi adanya patahan, retakan

dan robekan sampai stuktur terdalam. Kolimator dibuka selebar ukuran kaset yang digunakan, atur jarak fokus dengan *lead apron* sejauh 100 cm. *Lead apron* dikatakan tidak layak jika kerusakan lebih dari 15 mm² pada daerah vital dan kerusakan lebih dari 670 mm² pada daerah non vital ("Roshan Samuel Livingstone, Anna Varghese, Shyamkumar N. Keshava, 2018)

Pada beberapa penelitian sebelumnya, sudah dilakukan uji kebocoran *lead* apron dengan modalitas sinar-x. Akan tetapi pada beberapa penelitian tersebut hanya menggunakan radiologi konvensional computed radiography. Padahal radiologi konvensional digital radiography merupakan teknologi yang lebih terbarukan dari radiologi konvensional computed radiography.

Berdasarkan uraian di atas peneliti ingin mempelajari lebih dalam dan membuat karya tulis ilmiah yang berjudul "Analisis Perbandingan Uji Kelayakan *Lead Apron* Menggunakan Modalitas *Computed Radiography dan Digital Radiography* Di Instalasi Radiologi Rumah Sakit Daerah Nganjuk".

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas, maka diperoleh rumusan masalah penelitian, yaitu : bagaimana perbandingan hasil uji kelayakan *lead apron* menggunakan modalitas *computed radiography* dan *digital radiography*.

1.3 Tujuan

1. Tujuan Umum

Untuk menganalisa perbandingan hasil uji kelayakan *lead apron* menggunakan modalitas *computed radiography* dan *digital radiography*.

2. Tujuan Khusus

a. Menganalisis hasil uji kelayakan *lead apron* dengan *computed* radiography

b. Menganalisis hasil uji kelayakan *lead apron* dengan *digital* radiography

1.4 Manfaat Penelitian

1. Manfaat Teoritis

Hasil penelitian ini diharapkan dapat menambah kepustakaan dan referensi dibidang radiologi, tentang "Analisis Perbandingan Uji Kelayakan Lead Apron Menggunakan Modalitas Computed Radiography dan Digital Radiography".

2. Manfaat Praktis

a. Bagi Penulis

Dapat menambah wawasan dan ilmu pengetahuan hasil uji kelayakan *lead apron* dari kedua alat penunjang diagnostik dan diharapkan dapat memperluas wawasan dan ilmu pengetahuan tentang pentingnya penggunaan, perawatan dan bagaimana mengevaluasi kebocoran pada *lead apron*.

b. Bagi Institut Pendidikan

Sebagai tambahan referensi dan acuan bagi mahasiswa program studi radiologi yang akan melakukan penelitian lainnya berkaitan dengan tema penelitian ini.

1.5 Keaslian Penelitian

No	Peneliti	Judul	Tujuan	Metode	Hasil Penelitian
	dan	Penelitian	Penelitian	Penelitian	
	Tahun				
1.	Hadi <mark>Eka</mark>	Pengujian	Untuk	Metode	Dari seluruh <i>lead</i>
	Hamdani	Lead Apron	mengetahui	penelitian	apron yang diuji
	(2020)	Menggunakan	upaya	kuantitatif	terdapat lead
		Metode	perawatan,	deskriptif	apron yang
		Radiografi di	hasil	dengan	melebihi
		Instalasi	pengujian	pendekatan	standar kerusakan
		Radiologi	dan keadaan	survey	yaitu lubang
		RSUD Arifin	lead apron di	observasi	melebihi 15 mm²
		Achmad	Instalasi		di daerah vital
		Provinsi Riau	Radiologi		seperti
		1	RSUD Arifin		pada daerah chest
			Achmad		dan <i>pelvis</i>
			Provinsi Riau		
2.	M. Thori	Pengujian	Untuk	Metode	Dari keseluruhan
	Ghazali	Lead Apron di	mengetahui	penelitian	lead apron 1, 2,
N	(2020)	Instalasi	kelayakan	kuantitatif	dan 3 yang diuji,
	6	Radiologi	lead apron di	dengan	hasilnya adalah
		Rumah Sakit	instalasi	pendekatan	ketiga lead apron
		Umum Budi	radiologi	observasional	tersebut masih
		Rahayu	Rumah Sakit		layak digunakan,
		Pekalongan	Umum Budi		dikarenakan
			Rahayu		kerusakan pada
			Pekalongan		ketiga lead apron

					tersebut baik
					berupa titik
					densitas dan
					retakan tidak
					melewati batas
					standar yang ada.
3.	M.	Pengujian	untuk	Metode	Hasil pengujian
	Nanda	Lead Apron Di	mengetahui	penelitian	lead apron A
	Ali	Instalasi	apakah lead	kuantitatif	ditemukan sebuah
	Ma'ruf	Radiologi	apron yang	dengan	retakan ukuran 40
	(2020)	Rsud Dr. R.	ada di	pendekatan	mm dan 20 mm
		Goeteng	lnstalasi	observasional	dibagian kanan
		Taroenadibrat	Radiologi		atas atau kuadran
		Purbalingga	RSUD Dr.		I dan 30 mm
			R.Goeteng		dibagian kiri atas
			Taroenadibrat		atau kuadran II
			Purbalingga		dan lekukan
	-,1		masih layak		dibagian bawah
	10.0		digunakan		(kuadran III &
V	A. V		atau tidak.	7 /	IV), sedangkan
6				1 / 1	pada lead apron
	1.	1			B ditemukan
	1			1 3	kerusakan berupa
			_		retakan pada lead
					apron dengan
					ukuran 40.3 mm
					pada bagian
					kanan atas atau

