BAB I

PENDAHULUAN

A. Latar Belakang

Indonesia merupakan negara kepulauan terbesar di dunia yang memiliki beberapa daerah yang menjadi pusat penghasil kekayaan laut (Ariyanti *et al.*, 2018). Berdasarkan data ekspor hasil perikanan pada tahun 2003 dan 2004, Indonesia memiliki komoditas koral dan kulit kerang yang dihasilkan mencapai sekitar 3.208 ton dan 2.752 ton (Musapana & Amalia, 2020). Limbah padat berupa cangkang kerang tersebut merupakan sisa dari industri pengolahan kerang yang selama ini hanya dimanfaatkan dagingnya saja, sementara cangkangnya hanya dimanfaatkan sebagai kerajinan atau seni dekoratif, campuran pakan ternak, dan banyak juga yang dibuang dan menjadi limbah (Akbar *et al.*, 2019). Limbah cangkang kerang yang dibuang terus-menerus tanpa adanya pengolahan yang tepat, akan semakin banyak dan mengganggu, serta mencemari lingkungan (Ginting *et al.*, 2016). Dengan demikian, diperlukan upaya untuk mengatasi hal tersebut agar dapat bermanfaat dan mengurangi dampak terhadap lingkungan.

Pemanfaatan limbah cangkang kerang dapat dilakukan dengan memanfaatkan nutrisi yang terkandung di dalamnya sebagai unsur mineral dan senyawa kimia alami untuk berbagai produk, sehingga dapat meningkatkan nilai tambahnya (*added value*) (Islamiyah *et al.*, 2021). Nutrisi yang dapat ditemukan dalam cangkang kerang yaitu kandungan mineral terutama kalsium yang cukup tinggi (Abidin *et al.*, 2016). Kandungan kalsium tersebut dapat diformulasikan

menjadi salah satu sediaan farmasi seperti tablet, dengan kelebihan sediaan yang praktis, mudah dikonsumsi, dan mudah dibawa (Mindawarnis & Hasanah, 2017).

Kalsium sangat dibutuhkan untuk pertumbuhan dan perkembangan tubuh manusia, terutama dalam pembentukan tulang dan gigi (Amran, 2018). Kekurangan atau defisiensi terhadap kalsium dapat menyebabkan terjadinya masalah kesehatan, seperti kekeroposan gigi, densitas tulang abnormal dan osteoporosis (Abidin *et al.*, 2016). Oleh karena itu, menjaga asupan kebutuhan kalsium sangat diperlukan. Salah satu cara yang dapat dilakukan yaitu mengonsumsi tablet suplemen kalsium.

Jenis kerang yang banyak ditemukan dan dapat dimanfaatkan kandungan kalsiumnya di daerah Banyuwangi yaitu kerang batik (*Paphia undulata* B.) (Usman *et al.*, 2020). Berdasarkan penelitian dari Abidin *et al.* (2016), cangkang kerang batik (*Paphia undulata* B.) memiliki kandungan kalsium (Ca) yang cukup tinggi yaitu sebesar 24,20% dan dalam bentuk kalsium oksida (CaO) sebesar 53,38%.

Pemanfaatan kandungan cangkang kerang batik dengan diformulasikan ke dalam sediaan tablet merupakan salah satu langkah untuk menambah nilai ekonomis produk, menjaga kelestarian lingkungan, dan dapat mengurangi resiko pencemaran lingkungan (Abubakar *et al.*, 2021). Dengan demikian, pada penelitian ini akan memanfaatkan kandungan dalam cangkang kerang batik yang disintesis terlebih dahulu menggunakan metode kalsinasi kemudian diformulasikan menjadi sediaan farmasi berupa tablet.

B. Rumusan Masalah

Berdasarkan latar belakang tersebut, dapat dirumuskan masalah penelitian sebagai berikut:

- 1) Bagaimana pengaruh variasi jenis bahan pengikat terhadap mutu fisik sediaan tablet ekstrak cangkang kerang batik (*Paphia undulata* B.)?
- 2) Formulasi dengan jenis bahan pengikat manakah yang memiliki mutu fisik sediaan tablet yang baik?

C. Tujuan Penelitian

- 1) Mengetahui pengaruh variasi jenis bahan pengikat terhadap mutu fisik sediaan tablet ekstrak cangkang kerang batik (*Paphia undulata* B.).
- 2) Mengetahui formulasi yang memiliki mutu fisik sediaan tablet yang baik dengan variasi jenis bahan pengikat.

D. Keaslian Penelitian

Penelitian lain yang berkaitan dengan penelitian ini antara lain:

Tabel 1. Keaslian Penelitian

1.3				6.1
Nama/Tahun	Judul Penelitian	Metode Penelitian	Hasil Penelitian	Perbedaan
Usman <i>et al</i> .	Ekstraksi Kalsium	Eksperimental	Formulasi serbuk	Bentuk
(2020)	dari Cangkang	Laboratorium	effervescent kalsium	sediaan,
	Kerang Hijau		memiliki hasil uji	dan
	(Perna viridis L.)		organoleptik yang	formulasi.
	dan Kerang Batik		sama dari ketiga	
	(Paphia undulata		formulasi yang	
	B.) dengan		dilakukan. Hasil uji	
	Metode Kalsinasi		kadar air dan waktu	
	sebagai Sediaan		dispersi memiliki pola	
	Effervescent.		yang menurun dari	
			formulasi 1 hingga	
			formulasi 3. Formulasi	
			yang terbaik yaitu	
			formulasi 3.	
Sari <i>et al</i> .	Pengaruh	Eksperimental	PVP yang digunakan	Bahan aktif,
(2021)	Perbedaan Pati	Laboratorium	sebagai bahan pengikat	dan metode

	Singkong		terhadap sifat fisik	pembuatan
	(Manihot		tablet kalsium laktat	tablet.
	esculenta Crantz)		memiliki pengaruh	
	Pragelatinasi dan		yang signifikan	
	Pvp sebagai		terhadap waktu alir,	
	Bahan Pengikat		kekerasan tablet,	
	Terhadap Sifat		kerapuhan tablet dan	
	Fisik Tablet		waktu hancur tablet.	
	Kalsium Laktat		Bahan pengikat PVP	
			dengan konsentrasi 3%	
	1/1000	A MILLIE	dan 5% memiliki	
	10000		karakteristik sifat fisik	
		a distribution	tablet yang memenuhi	
			syarat.	
(Rustiani et	Sediaan Tablet	Eksperimental	Perbedaan jenis	Bahan Aktif
al., 2019)	Kombinasi	Laboratorium	pengikat PVP K-30,	dan
11.0	Ekstrak Daun	5	Na-CMC dan Gelatin	formulasi.
1.7	Salam (Eugenia		dengan konsentrasi 4%	III I I
17	Polyantha) dan		memberikan hasil	110
1.1	Herba Seledri		tablet dengan mutu	11
- 1/1	(Apium		yang sama d <mark>an</mark>)
1.1	Graveolens)		memenuhi persyaratan.	ſ.
9.00	dengan Variasi		of the second	
1	Jenis Pengikat		1 2 1	

E. Manfaat Penelitian

1. Manfaat teoritis

Penelitian ini dapat dimanfaatkan sebagai informasi dasar untuk pengembangan formulasi dan uji mutu fisik sediaan tablet dengan variasi jenis bahan pengikat bagi peneliti selanjutnya, dan diharapkan dapat menambah pengetahuan di bidang farmasi.

2. Manfaat praktis

Penelitian ini dapat memberikan informasi tambahan tentang pengaruh variasi jenis bahan pengikat terhadap mutu fisik sediaan tablet ekstrak cangkang kerang batik (*Paphia undulata* B.).

3. Manfaat bagi institusi

Penelitian ini dapat dimanfaatkan sebagai referensi pengembangan pendidikan dan ilmu pengetahuan tentang pengaruh bahan pengikat terhadap mutu fisik sediaan tablet.

4. Manfaat bagi pembaca

Penelitian ini dapat memberikan informasi bagi pembaca tentang pengaruh variasi jenis bahan pengikat terhadap mutu fisik sediaan tablet ekstrak cangkang kerang batik (*Paphia undulata* B.).