BABI

PENDAHULUAN

1.1. Latar Belakang

Luka bakar adalah trauma yang sering disepelekan dapat menyerang siapa saja, kapan saja dan di mana saja. Luka bakar dapat disebabkan oleh gesekan, dingin, panas, radiasi, bahan kimia atau sumber listrik, sebagian besar luka bakar disebabkan oleh panas dari cairan panas, benda padat atau api. Walaupun semua luka bakar melibatkan kerusakan jaringan akibat transfer energi, penyebab lain dapat dikaitkan dengan respons fisiologis dan patofisiologis yang berbeda. Contohnya seperti, api atau minyak panas dapat menyebabkan luka bakar yang dalam, sedangkan cedera melepuh (yaitu dari cairan panas atau uap) cenderung tampak lebih dangkal pada awalnya, karena pengenceran yang cepat dari sumber dan energi (Marc G. Jeschke, 2020).

Proses penyembuhan pasien luka bakar memerlukan pendekatan komprehensif yang mencakup beberapa strategi utama. Pertama, pendinginan segera pada area luka bakar dengan suhu optimal (10-20°C) penting untuk mengurangi rasa sakit dan meminimalkan kerusakan jaringan. Kedua, perawatan pembedahan dini seperti eksisi dan penutupan luka bakar terbukti efektif dalam mengurangi komplikasi seperti infeksi dan gangguan metabolisme. Ketiga, pada kasus luka bakar parah yang menyebabkan cedera paru-paru, ventilasi dengan strategi pelindung paru-paru diperlukan untuk meningkatkan hasil perawatan. Terakhir,

termoregulasi dengan meningkatkan suhu ruangan dapat membantu mencegah hipotermia, meskipun dukungan ilmiah untuk praktik ini masih memerlukan penelitian lebih lanjut. (Wojciech Zwierełło, 2023).

Proses penyembuhan luka terdiri dari beberapa fase, yaitu inflamasi, proliferasi dan remodeling. Setiap fase melibatkan jenis sel dan mediator berbeda yang bekerja sama untuk memulihkan integritas jaringan. Fase inflamasi ditandai dengan respons imun awal yang bertujuan menghilangkan jaringan yang rusak dan mencegah infeksi. Fase proliferasi meliputi pembentukan jaringan granulasi, Neoangiogenesis, pembentukan fibroblast dan re-epitelisasi, sedangkan fase remodeling bertujuan untuk memperbaiki struktur jaringan dan mengembalikan fungsinya. Namun penyembuhan luka bakar seringkali tidak tuntas dan dapat menimbulkan jaringan parut yang mengganggu fungsi dan estetika kulit. Oleh karena itu, strategi terapi yang mampu mempercepat penyembuhan luka dan mengurangi komplikasi telah menjadi fokus utama penelitian medis (Amy L. Strong, 2017).

Penggunaan bahan alami dalam pengobatan luka telah dikenal sejak lama dan menjadi pilihan utama dalam pengobatan tradisional di banyak negara. Belakangan ini perhatian terhadap pengobatan berbahan alami semakin meningkat seiring dengan kesadaran akan efek samping obat sintetik. Salah satu tanaman yang mempunyai kemampuan menyembuhkan luka adalah *Polyathia longifolia* yang lebih dikenal di Indonesia dengan nama Glodokan Tiang. Tanaman ini kaya akan senyawa

bioaktif seperti flavonoid, tanin, saponin, dan alkaloid yang memiliki berbagai aktivitas farmakologi, antara lain sifat antiinflamasi, antioksidan, dan antibakteri. Senyawa ini berperan penting dalam mengurangi peradangan dari senyawa alkaloid, menghambat pertumbuhan mikroba dari senyawa saponin, sebagai mengencangkan jaringan (astrigent) dari senyawa tanin, dan melindungi jaringan dari kerusakan oksidatif dari senyawa flavonoid, yang semuanya merupakan faktor penting dalam penyembuhan luka bakar (Yung-Chia Chen, 2021).

Penelitian sebelumnya yang dilakukan oleh (M. Ghous, 2023) dan (Nandini Rajput, 2024) menunjukkan bahwa ekstrak daun *Polyalthia longifolia* dengan konsentrasi 5 % memiliki berbagai manfaat farmakologis, termasuk kemampuan menghambat pertumbuhan bakteri patogen oleh alkaloid dan tanin dan mengurangi respons inflamasi oleh saponin. Selain itu, senyawa antioksidan seperti flavonoid yang terdapat pada daun ini dapat melindungi sel kulit dari kerusakan akibat radikal bebas yang dihasilkan selama respon peradangan sehingga mempercepat regenerasi jaringan (Dhiren k Vaghela, 2021). Potensi farmakologinya dari ekstrak daun glodokan tiang sudah diketahui, namun dalam penerapannya dalam formulasi sediaan farmasi dalam penerapan kulit (topikal) seperti gel untuk pengobatan luka bakar belum pernah dieksplorasi dalam literatur ilmiah. Penggunaan gel sebagai pembawa topikal memungkinkan senyawa aktif menembus jaringan yang rusak dengan lebih baik, memberikan konsentrasi lokal yang tinggi dan

memfasilitasi efek pengobatan yang lebih optimal. Gel juga memiliki kandungan air tinggi yang dapat memberikan efek dingin yang menyegarkan, mengurangi peradangan dan mempercepat proses penyembuhan luka bakar.

Berdasarkan latar belakang yang telah diuraikan sebelumnya, penelitian ini bertujuan untuk menguji aktivitas gel yang mengandung ekstrak daun *Polyalthia longifolia* dalam mempercepat proses penyembuhan luka bakar pada tikus putih galur Wistar (*Rattus norvegicus*) dengan variasi konsetrasi 5%, 10% dan 20% sebagai model hewan. Pemilihan tikus putih sebagai model hewan didasarkan pada kemiripan fisiologi penyembuhan luka dengan manusia, sehingga hasil penelitian ini diharapkan dapat memberikan gambaran yang relevan untuk aplikasi klinis pada manusia di masa mendatang (Setyo Widi N., 2018). Selain itu, penelitian ini juga diharapkan dapat berkontribusi dalam pengembangan sediaan farmasi berbasis bahan alam yang efektif dan aman, khususnya di Indonesia yang memiliki kekayaan hayati yang melimpah tetapi masih kurang dieksplorasi untuk kepentingan medis.

Berdasarkan kandungan dalam *Polyalthia longifolia* yang berpotensi dalam penyembuhan luka bakar karena aktivitas antibakteri, antiinlamasi dan antioksidannya. Namun, perlu diperhatikan adanya potensi efek negatif. Meskipun ada penelitian toksisitas oral akut dari ekstrak standar daun glodokan tiang telah dievaluasi aman, dan dosis dapat digunakan pada 3240 mg / kg pada tikus Wistar albino (Sumitra

Chanda, 2012), efek topikal pada kulit yang terluka mungkin berbeda . Reaksi alergi atau iritasi kulit bisa terjadi pada individu yang sensitif terhadap senyawa dalam *Polyalthia longifolia*. Oleh karena itu, kriteria eksklusi untuk populasi tikus galur Wistar dalam pemberian perawatan penyembuhan luka dengan *Polyalthia longifolia* sebaiknya mencakup tikus dengan riwayat alergi atau kondisi kulit inflamasi yang signifikan di area luka, untuk menghindari komplikasi yang tidak diinginkan. Pemantauan ketat terhadap reaksi kulit selama pengobatan juga penting (Yung-Chia Chen, 2021).

1.2. Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, masalah dalam penelitian ini dapat dirumuskan dalam beberapa pertanyaan berikut:

- 1.2.1. Apakah formulasi gel ekstrak daun Glodokan Tiang (*Polyathia longifolia*) memiliki aktivitas penyembuhan luka bakar derajat II pada tikus putih galur Wistar?
- 1.2.2. Pada konsetrasi berapakah formulasi gel ekstrak daun Glodokan Tiang (*Polyathia longifolia*) paling optimal dalam mempercepat penyembuhan luka bakar derajat II pada tikus putih galur Wistar?

1.3. Tujuan Penelitian

1.3.1. Mengevaluasi efektivitas gel ekstrak daun *Polyathia longifolia* dalam mempercepat penyembuhan luka bakar derajat II pada tikus putih.

1.3.2. Untuk mengetahui konsetrasi gel ekstrak daun Glodokan Tiang

(Polyathia longifolia) paling optimal dalam mempercepat

penyembuhan luka bakar derajat II pada tikus putih?

1.4. Manfaat Penelitian

- 1.4.1. Hasil penelitian ini dapat memperluas pemahaman mengenai konsep penyembuhan luka berbasis bahan alami. Data yang dihasilkan dapat digunakan sebagai referensi untuk penelitian lebih lanjut yang mengeksplorasi potensi tanaman Glodokan Tiang (*Polyathia longifolia*).
- 1.4.2. Dapat dimanfaatkan untuk mengembangkan produk farmasi baru berupa gel topikal yang berbasis ekstrak daun Glodokan Tiang (*Polyathia longifolia*). Potensi menjadi alternatif yang lebih aman dan efektif untuk pengobatan luka bakar.

1.5. Keaslian Penelitian

No.	Judul Jurnal	Tahun	Penulis		Review	GAP
1.	Phytochemical and	2018	Chandaka	1.	Design penelitian: desain deskriptif atau analitis untuk	• Jurnal pertama menawarkan
	pharmacological		Lavanya, Battu		memfasilitasi pemahaman yang komprehensif tentang	desain deskriptif atau
	studies on		Ganga Rao,		subjek.	analitis, yang mungkin
	Polyalthia		Devarakonda	2.	Parameter: Parameter utama dapat mencakup tema-	kurang memberikan
	longifolia		Ramadevi		tema spesifik dalam topik, metrik yang relevan untuk	wawasan mekanistik yang
					pengumpulan data, dan indikator yang selaras dengan	rinci tentang fenomena yang
					tujuan penelitian.	sedang dipelajari.
				3.	Variabel : -	 Jurnal kedua dan ketiga
				4.	Metode uji: Metode pengujian tersirat berbasis data dan	berfokus pada studi in vitro.
					dapat mencakup analisis statistik, studi kasus, dan	Dapat melakukan studi in
					mungkin penilaian kualitatif untuk memvalidasi klaim	vivo untuk mengevaluasi
					dan kesimpulan yang disajikan.	efek terapeutik pada
2.	Antimicrobial And	2024	G.E. Ankwai,	1.	Design penelitian : desain eksperimental untuk	organisme hidup, yang dapat
	Phytochemical		M.Ibrahim, S.E.		mengevaluasi aktivitas antimikroba dan kandungan	memberikan wawasan yang
	Evaluation Of		Egga, I. O.		fitokimia dari ekstrak daun Monoon longifolium.	lebih komprehensif tentang
	Aqueous Leaf		Nuhu		melibatkan pengujian ekstrak daun terhadap beberapa	kemanjuran dan
	Extract				patogen bakteri standar.	keamanannya.
	Of Monoon			2.	Parameter: Aktivitas antimikroba yang diukur melalui	
	longifolium				zona hambatan (zone of inhibition) terhadap bakteri yang	
					diuji. Konsentrasi Minimum Inhibitory Concentration	
					(MIC) dan Minimum Bactericidal Concentration (MBC)	
					dari ekstrak	
				3.	Variabel : Konsentrasi ekstrak daun Monoon	
					longifolium, Aktivitas antimikroba yang diukur melalui	
					zona hambatan dan nilai MIC/MBC terhadap bakteri	

			Staphylococcus aureus, Escherichia coli, dan
			Pseudomonas aeruginosa.
			4. Metode uji: Agar Well Diffusion Method dan Tube
			Dilution Method
3.	Phytochemical	2023	M. Ghous, 1. Design penelitian: desain eksperimental untuk
	Analysis And Anti-		N.A.Dogar, A. mengevaluasi potensi anti-oksidan dan analisis fitokimia
	Oxidant Potential		Hanif and dari ekstrak etanol daun Polyalthia longifolia. Daun
	Of Ethanolic		M.Jabbar dikumpulkan, dibersihkan, dan diekstraksi menggunakan
	Extract Of		metode Soxhlet dengan pelarut etanol.
	Polyalthia		2. Parameter: keberadaan berbagai fitokimia (seperti
	longifolia leaves		flavonoid, alkaloid, tanin, terpenoid, dan glikosida
			jantung) serta aktivitas anti-oksidan yang diukur
			menggunakan metode DPPH.
			3. Variabel: konsentrasi ekstrak etanol dari daun Polyalthia
			longifolia, dan aktivitas scavenging radikal bebas (RSA)
			yang diukur melalui penurunan absorbansi pada panjang
			gelombang 517 nm.
			4. Metode uji : Uji fitokimia dan Uji aktivitas anti-oksidan
			menggunakan DPPH
4.	Antidiabetic And	2011	Aparna 1. Design penelitian: eksperimental berbagai kelompok Dari semua jurnal ini, yang
	Wound Healing		Lakshmi, Y. tikus yang menerima perlakuan berbeda untuk menilai diteliti adalah luka diabetes
	Activity Of Various		Mastan Rao, Ch efek dari ekstrak kulit kayu. dan luka sayat, jadi bisa
	Bark Extracts Of		Bhargavi And 2. Parameter: yang diukur meliputi kadar glukosa darah, diteliti luka bakar pada
	Polyalthia		Uma Seelam kadar protein total, kadar kolesterol total, kadar kreatinin punggung tikus.
	longifolia		serum, dan kadar Blood Urea Nitrogen (BUN) pada tikus. Karena meneliti
			3. Variabel: Jenis ekstrak kulit kayu Polyalthia longifolia menggunakan kulit kayu, jadi
			(ekstrak n-heksana, etilasetat dan metanol) yang bisa diteliti menggunakan

		diberikan pada tikus, serta kelompok kontrol yang ekstrak daun <i>Polyalti</i>
		menerima akuades atau obat standar (Glipizide). longifolia
		4. Metode uji : penginduksian diabetes pada tikus
		menggunakan aloksan, pemberian ekstrak kulit kayu
		secara oral, dan menilai efeknya pada kadar glukosa darah
		dan parameter biokimia lainnya. Aktivitas penyembuhan
		luka dievaluasi dengan menggunakan model luka eksisi
		dan sayatan pada tikus yang diobati dengan ekstrak kulit
		kayu.
5.	In Vitro Evaluation 2012	
	of Wound Healing	Hasobo penyembuhan luka dari nanopartikel herbal ketika
	Efficiency of	Mohammad dimasukkan ke dalam pembalut luka antimikroba.
	Herbal	Ahamed, R. 2. Parameter: Diukur dengan mengamati penutupan luka
	Nanoparticles	Radhai, C. pada periode tertentu, mengamati pencegahan
	Loaded	Balakumar pertumbuhan bakteri, menentukan sitotoksisitas
	Antimicrobial	nanopartikel herbal pada garis sel tertentu dengan
	Wound Dressing	parameter seperti ukuran, bentuk, dan muatan permukaan
		nanopartikel juga dikarakterisasi dengan menggunakan
		teknik analisis yang berbeda.
		3. Variabel: Jenis dan konsentrasi nanopartikel herbal yang
		digunakan dalam pembalut luka, tingkat penyembuhan
		luka (persentase penutupan luka dari waktu ke waktu).
		4. Metode uji: Transmission Electron Microscopy (TEM),
		Dynamic Light Scattering (DLS), dan analisis potensial
		Zeta digunakan untuk menyiapkan dan mengkarakterisasi nanopartikel.